MOR106, an anti-IL-17C antibody, reduces severity of atopic-dermatitis-like skin inflammation in Flaky Tail model

Nick Vandeghinste1, Tara Moran2, Padraig G. Fallon2, Stefan Steidl3
1 Galapagos NV, Mechelen, Belgium
2 School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
3 MorphoSys AG, Planegg, Germany
E-mail: rd@glpg.com

Introduction

Interleukin-17C (IL-17C) is a distinct member of the IL-17-family that is induced in inflamed epithelia. IL-17C drives skin inflammation in an autocrine manner by binding to its receptor IL17RA/IL17RE complex, which is predominantly present on epithelial cells. Several lines of evidence point towards a role of IL-17C in driving disease activity in psoriasis1 but its role in other inflammatory skin diseases remains to be elucidated. Using the MOR106 anti-IL17C antibody, we recently showed that increased skin IL-17C expression plays a role in the development of atopic dermatitis (AD) and is associated with cutaneous inflammatory responses in the calcipotriol-induced mouse model of AD1,2. In addition, anti-IL-17C suppresses development of experimental psoriasis in a IL-23-driven murine skin inflammation model. MOR106 is a human IgG1 monoclonal antibody derived from the MorphoSys Yanti® library that potently and selectively binds to human and mouse IL-17C, thereby inhibiting the binding of IL-17C to its IL-17RE receptor and thus its biological activity. MOR106 attenuates progression of clinical signs in FT mice

![Image](image1.png)

Figure 1. FT mice treated with MOR106 have less hair loss in the shoulder & neck region and less skin association under the neck.

Figure 2. MOR106 reduces progression of skin severity score.

Figure 3. MOR106 reduces eyelid inflammation (blepharitis).

Objective & Method

We sought to further strengthen the evidence for IL-17C as a disease relevant cytokine in AD by evaluating its role in established disease. To this end, we evaluated the therapeutic administration of the anti-IL-17C antibody MOR106 in the Flaky Tail (FT) mutant mouse strain which spontaneously develops atopy and progressive overt dermatitis due to a defective skin barrier.3

- Study outline
 - FT mutant mice
 - (MOR106 treated + IgG control) 6-weeks old, with overt dermatitis age 9-10 weeks

- Randomized - Groups (n=10/group)
 1. FT mutant mice + isotype Ab (30 mg/kg) (i.p. twice weekly x 6 weeks)
 2. FT mutant mice + MOR106 (3 mg/kg) (i.p. twice weekly x 6 weeks)
 3. FT mutant mice + MOR106 (30 mg/kg) (i.p. twice weekly x 6 weeks)
 4. FT mutant mice + DEX (2 mg/kg) (i.p. twice weekly x 6 weeks)

- WT 3 age-matched C57BL/67 strain mice used as wildtype control mice

- All assessments were essentially done as described before.3

- Statistical analyses were performed with a one-way analysis of variance (ANOVA) and Dunnett post hoc test. *: p<0.05; **: p<0.01; ***: p<0.001

MOR106 reduces acanthosis & mast cell infiltration in FT lesional skin

![Image](image2.png)

Figure 4. Histomorphometric analysis of H&E stained lesional skin demonstrated a significant reduction of acanthosis upon treatment with MOR106 with a similar effect to dexamethasone (DEX) treatment.

Figure 5. MOR106 reduces number of mast cells in FT lesional skin. Data represent the number of mast cells counted per high power field (HPF) in paraffin-embedded tissue sections stained with toluidine blue.

MOR106 reduces serum IgE and Th2 cytokines in FT mice

![Image](image3.png)

Figure 6. MOR106 reduces the increased serum IgE levels in FT mice.

Figure 7. Inflammation in FT mice is characterized by increased Th2/Th17 cytokines. MOR106 reduced mainly the Th2 cytokines.

Conclusions

- Administration of the IL-17C neutralizing antibody MOR106 significantly attenuated the development of established AD-like inflammation in the flaky tail model of spontaneous dermatitis, with effects comparable to the treatment with a high dose of dexamethasone.

- Inhibiting IL-17C activity is a potential novel therapeutic paradigm for treating AD. MOR106 is currently evaluated in a Phase 1 study in healthy volunteers and patients with AD (NCT02739009).

References

3. Vandeghinste N et al. (2017). IL-17C drives skin inflammation in calcipotriol-induced rodent model of atopic dermatitis. Poster #PO239 EADV 2017 congress