Pharmacodynamics and Pharmacokinetics of the Autotaxin Inhibitor GLPG1690 in the FLORA Trial: A Randomized, Placebo-Controlled, Double Blind Phase IIa Clinical Trial of 12 Weeks in Individuals with Idiopathic Pulmonary Fibrosis

Sonia Dupont1, Julie Desrivots, Jovica Raicic3, Roland Blanqu61, Alain Monjardet1, Lisa Amalass2y, Liesbeth Fagard2, Jasna Padovan1, Bertrand Heckmann1, O. Van de Steen2, Ellen van der Aar2, Ann Fieuw2

1 Galapagos SASU, Romainville, France; 2 Galapagos NV, Mechelen, Belgium; 3 Fidelta d.o.o., Zagreb, Croatia

E-mail: rd@glpg.com

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disease with median survival of 2-5 years after diagnosis.

GLPG1690 is a novel, potent, and selective small-molecule autotaxin (ATX) inhibitor (Fig.1). ATX is the main enzyme responsible for the production of lysophosphatidic acid (LPA) in blood.

LPA signals through multiple receptors, controlling a range of cell activities like migration, proliferation, and survival (Fig.2) (5). Biology of LPA in IPF:

- Increase in LPA levels in the bronchoalveolar lavage fluid (12),
- Elevation of LPA C22:4 in exhaled breath condensate (5),
- Increase of ATX levels in human fibrotic lung (12).

Objectives

- Evaluate the pharmacodynamic (PD) effects of GLPG1690 in IPF patients using plasma LPA C18:2 levels as target engagement biomarker
- Evaluate the pharmacokinetics (PK) of GLPG1690
- Investigate PK and PD correlation

Methods

- Randomized, double-blind, placebo-controlled (FLORA; NCT02738801)
- Subjects with IPF (≥40 years; non-smokers; not on pirfenidone or nintedanib treatment) with a centrally confirmed diagnosis

PD: Plasma LPA C18:2 by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS)

GLPG1690 plasma concentration by LC-MS/MS

Ex vivo plasma assay: dose response of GLPG1690 incubated for 2h in human plasma and assessment on effects on levels of different LPA species by LC-MS/MS

Results

- Ex vivo plasma assay

LPA species GLPG1690 IC50 (nM)
C18:0 96
C18:1 117
C18:2 119
C18:3 112
C18:4 102
C20:4 93
C22:0 94

- Similar IC50 for different LPA species in human plasma (5).

PK/PD correlation in plasma

GLPG1690 concentration (ng/mL)

Dose (µg/kg)

Healthy volunteers

D14: 24h post-dose 4.21 ± 0.39
D14: 4h post-dose 4.06 ± 0.30

FLORA

Week 4 24h post-dose 8.04 ± 0.32
Week 4 4h post-dose 7.74 ± 0.26

IPF patients

Week 12 24h post-dose 1000 ± 100
Week 12 4h post-dose 900 ± 100

- Similar PK/PD profile in healthy and IPF subjects
- PK/PD modelling under evaluation

Results - GLPG1690 PK at week 4

PK parameters

\[\frac{C_{\text{max}}}{\text{mean}} (\mu g/mL) \]
\[\frac{AUC_{\text{last}}}{\text{mean}} (\mu g h/mL) \]

Mean (SD) 8.06 (3.72) 8.4 (3.53)

Conclusions

Results from this Phase IIa trial in IPF subjects indicate that GLPG1690, a small molecule inhibitor of autotaxin:

- Induced a fast and sustained reduction of plasma LPA C18:2, indicative for target engagement
- Presented a similar PK/PD profile in IPF and healthy subjects (FHV)11
- PK profile and sustainable PD effect support once-daily dosing

More data @ ATS
Pr T. M. Maher (A2436) & Dr. B. Mignot (A5928) oral presentations

Next steps

Evaluate GLPG1690 in the ISABELA Phase 3 program in patients with idiopathic pulmonary fibrosis

References

Disclosure

All authors are employees of Galapagos or employees of Fidelta, a subsidiary of Galapagos, at the time of the study.