Discovery of GLPG1690: a first-in-class autotaxin inhibitor in clinical development for the treatment of idiopathic pulmonary fibrosis

Nicolas Desroy, PhD
Team Leader Medicinal Chemistry
Galapagos SASU, Romainville (France)

251st American Chemical Society National Meeting, San Diego
13-17 March 2016
Idiopathic Pulmonary Fibrosis (IPF)
High unmet medical need

- NIH defines IPF as “a condition in which over a period of time the lung tissue becomes thickened, stiff and scarred”
 - Progressive interstitial lung disease
 - Difficulties breathing and reduced ability to oxygenate the blood
 - High mortality: ~20% 5-yr survival rate
 - ~40,000 / yr in the US
 - Onset of the disease between 50 and 70 years old
- No curative treatment available

Idiopathic Pulmonary Fibrosis (IPF)
Etiology and drugs approved recently

- IPF believed to result from inflammatory response to microscopic injury
 - Risk factors: cigarette smoking, environmental factors, infectious agents, genetic factors...

- Current therapies (approved since 2010) only slow down disease progression

<table>
<thead>
<tr>
<th>Drugs approved for IPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pirfenidone</td>
</tr>
<tr>
<td>Roche</td>
</tr>
<tr>
<td>Precise mechanism of action unknown</td>
</tr>
<tr>
<td>Nintedanib (BIBF-1120)</td>
</tr>
<tr>
<td>Boehringer Ingelheim</td>
</tr>
<tr>
<td>Inhibition of multiple tyrosine kinases</td>
</tr>
</tbody>
</table>

Thannickal V. et al *Drugs* (2016)
Autotaxin (ATX)

Secreted enzyme producing bioactive LPA

- First isolated in 1992 from melanoma cells
- Extracellular enzyme
- Converts lysophosphatidyl choline (LPC) into lysophosphatidic acid (LPA)
 - Family of bioactive lipids with varied fatty acid chain length and saturation

Autotaxin-LPA signaling

- LPA acts through GPCR LPA$_{1-6}$
 - LPA signaling involved in multiple cellular processes and pathological conditions
- Recent studies suggest role of ATX-LPA signaling in IPF
 - Increased levels of ATX in fibrotic lungs and of LPA in BronchoAlveolar Lavage Fluid (BALF, mouse and human data)
 - Efficacy in murine IPF models shown for LPA$_1$ antagonists and ATX inhibitors
 - BMS-986020 (LPA$_1$ antagonist) in phase 2 IPF trial

Qian, Y.; Budd, D. *Future Med. Chem.* (2013)
Structure of Autotaxin

Multidomain glycoprotein (~100 kDa) encompassing
- N-terminal signal sequence with two Somatomedin B (SMB)-like domains
- Catalytic domain with two zinc ions
- Nuclease-like domain (inactive)

Co-crystallization of ATX with LPA

Overlay of LPA (14:0) and LPA (22:6) co-crystallized in Autotaxin

- Phosphate groups bind zinc atoms in a similar way
- Lipophilic chains fill lipophilic pocket
- Presence of LPA in the channel suggests a role of ATX for local LPA delivery

Autotaxin small molecules inhibitors

Lipid-like structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Servier</td>
</tr>
<tr>
<td></td>
<td>Prestwich et al.</td>
</tr>
</tbody>
</table>

Linear structures with lipophilic tail and polar head

<table>
<thead>
<tr>
<th>Structure</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parrill et al.</td>
</tr>
<tr>
<td></td>
<td>Pfizer / Merck KGaA</td>
</tr>
<tr>
<td></td>
<td>Moolenaar et al.</td>
</tr>
<tr>
<td></td>
<td>Hofmann-La Roche</td>
</tr>
</tbody>
</table>

Alternative shape

<table>
<thead>
<tr>
<th>Structure</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amira</td>
</tr>
<tr>
<td></td>
<td>X-RX Discovery</td>
</tr>
<tr>
<td></td>
<td>Biogen</td>
</tr>
<tr>
<td></td>
<td>Eli Lilly</td>
</tr>
</tbody>
</table>

Assessment of Autotaxin activity

Using natural substrate(s)

Autotaxin

Choline Oxidase

2 O₂ + H₂O

Betaine + 2 H₂O₂

Peroxidase

TOOS + 4-aminoantipyrine

Quinoneimine dye + 4 H₂O

Plasma assay

LC-MS/MS detection

Multiple LPA species in plasma

Luminescence detection

LPC assay

Using synthetic substrate

Autotaxin

Fluorophore

Quencher

FS-3

Fluorescence detection

FS-3 assay

Autotaxin inhibitors

Hit series identified by HTS using FS-3 assay

Imidazo[1,2-a]pyridine hit series

![Chemical structure of Imidazo[1,2-a]pyridine hit series](image)

Best compounds:
FS-3 assay IC_{50}~30nM

- Reduction of LPA production in plasma
- Poor metabolic stability
- Non drug-like substituents

Reduction of LPA production in rat plasma (at 10 µM)

Method: Compound incubation in plasma for 6h at 37°C

- Mean (Control T0)
- Mean (Control 6h)
- Mean Cpd 1 (6h)
- Mean Cpd 2 (6h)
Autotaxin inhibitors
Hit expansion with FS-3 assay

- Improvement of PK properties led to loss of plasma activity
- Gain in potency required for reduction of LPA production in plasma

<table>
<thead>
<tr>
<th>Plasma activity</th>
<th>in active</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK species F (%)</td>
<td>Rat 39</td>
</tr>
<tr>
<td>Cl (L/h/kg)</td>
<td>0.15</td>
</tr>
<tr>
<td>Vss (L/kg)</td>
<td>0.49</td>
</tr>
<tr>
<td>Half-life (iv, h)</td>
<td>2.7</td>
</tr>
</tbody>
</table>

HTS hit series

FS-3 assay IC₅₀: 137 nM

FS-3 assay IC₅₀: 122 nM
Autotaxin inhibitors
Potent inhibitors in FS-3 assay

<table>
<thead>
<tr>
<th>IC<sub>50</sub></th>
<th>FS-3 plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 nM</td>
<td>>10 µM</td>
</tr>
<tr>
<td>7.9 nM</td>
<td>>10 µM</td>
</tr>
<tr>
<td>11.5 nM</td>
<td>4.8 µM</td>
</tr>
</tbody>
</table>

- No good correlation between FS-3 assay and activity in plasma activity
- FS-3 assay not further used to drive SAR optimization
Alternative biochemical assay
Measuring choline released by cleavage of LPC

- Good correlation between LPC and rat plasma activities
- Biochemical assay using natural LPC substrate used for further SAR exploration

<table>
<thead>
<tr>
<th>IC<sub>50</sub></th>
<th>plasma activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-3</td>
<td><10 nM</td>
</tr>
<tr>
<td></td>
<td>>10 µM</td>
</tr>
<tr>
<td>LPC: >10 µM</td>
<td></td>
</tr>
<tr>
<td>7.9 nM</td>
<td>>10 µM</td>
</tr>
<tr>
<td>LPC: 6.8 µM</td>
<td></td>
</tr>
<tr>
<td>11.5 nM</td>
<td>4.8 µM</td>
</tr>
<tr>
<td>LPC: 2.4 µM</td>
<td></td>
</tr>
</tbody>
</table>
SAR optimization with LPC assay
Exploring C6 part

LPC IC₅₀
- 2.4 µM
- 710 nM
- 357 nM

Introduction of H-bond acceptor and side chain extension improve activity
Co-crystal structure

- Fluorophenyl part fits in lipophilic pocket
- Piperidine and side chain occupy channel
- No binding to Zinc atoms

Mode of binding could possibly inhibit LPA production and delivery

LPC IC\textsubscript{50}

357 nM
Exploring ATX channel
Extending C6 part

IC$_{50}$ = 2.4 µM

Plasma instability

IC$_{50}$ = 480 nM

Ester surrogates

<table>
<thead>
<tr>
<th>Structure</th>
<th>IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5 µM</td>
</tr>
<tr>
<td></td>
<td>4.1 µM</td>
</tr>
<tr>
<td></td>
<td>1.7 µM</td>
</tr>
<tr>
<td></td>
<td>2.4 µM</td>
</tr>
<tr>
<td></td>
<td>1.6 µM</td>
</tr>
<tr>
<td></td>
<td>261 nM</td>
</tr>
<tr>
<td></td>
<td>86 nM</td>
</tr>
<tr>
<td></td>
<td>246 nM</td>
</tr>
</tbody>
</table>
Exploring ATX lipophilic pocket

Thiazole part substitution

- Thiazole best for activity
- Several substituents can boost potency

<table>
<thead>
<tr>
<th>LPC IC_{50}</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>710 nM</td>
<td>2.3 µM</td>
<td>138 nM</td>
<td>1.4 µM</td>
</tr>
<tr>
<td>281 nM</td>
<td>226 nM</td>
<td>7.5 µM</td>
<td>126 nM</td>
</tr>
</tbody>
</table>

Thiazole IC_{50} values:
- 710 nM
- 1.2 µM
- 7.5 µM
Exploring ATX lipophilic pocket
Modelling hypothesis for potency improvement

water molecule trapped in hydrophobic environment

LPC IC\textsubscript{50} 710 nM 138 nM

water molecule is released and replaced by nitrile group

Increase in potency by introduction of nitrile on thiazole could be explained by removal of a water molecule from the hydrophobic pocket
Autotaxin inhibitor lead compound

- Potent and orally exposed in rodents
- ADMET properties to be improved:
 - hERG inhibition
 - CYP3A4 time-dependent inhibition (TDI)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC IC$_{50}$</td>
<td>27 nM</td>
</tr>
<tr>
<td>Rat plasma IC$_{50}$</td>
<td>101 nM</td>
</tr>
</tbody>
</table>
hERG inhibition
Lowering linker basicity

- Replacement of piperidine linker by piperazine (less basic) decreased hERG inhibition
- ATX activity retained

<table>
<thead>
<tr>
<th>Linker</th>
<th>hERG IC$_{50}$</th>
<th>LPC IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.9 µM</td>
<td>27 nM</td>
</tr>
<tr>
<td></td>
<td>>11.1 µM</td>
<td>26 nM</td>
</tr>
</tbody>
</table>

hERG IC$_{50}$ vs linker

IC$_{50}$ = 10 µM

[Graph showing hERG IC$_{50}$ vs linker concentrations with data points for piperidine and piperazine linkers]
CYP3A4 time dependent inhibition
Structure-property relationship

- Core modification improved CYP3A4 TDI
 - Degradation of DMSO solutions of imidazo[1,2-a]pyrazine compounds observed
CYP3A4 time dependent inhibition
Structure-property relationship

Formation of reactive metabolite from imidazo[1,2-a]pyridine

- Imidazo[1,2-a]pyridine known to form reactive metabolite upon CYP activation
- Metabolite can react with nucleophiles (GSH, CYP side-chain residues)

CYP3A4 time dependent inhibition
Introducing soft spot/steric hindrance

- Introduction of methyl in position 7 or 8 of imidazo[1,2-a]pyridine removed CYP3A4 TDI
- Slight loss of potency with additional methyl group on core

| LPC IC$_{50}$ | 811 nM (non-methylated analog: 246 nM) | 103 nM (non-methylated analog: 27 nM) |

Combining structural features
GLPG1690

<table>
<thead>
<tr>
<th></th>
<th>LPC IC$_{50}$ 131 nM (K$_i$ = 15 nM, competitive inhibitor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma IC$_{50}$</td>
<td>Mouse: 417 nM Rat: 542 nM Human: 221 nM</td>
</tr>
<tr>
<td>hERG IC$_{50}$</td>
<td>>10 µM</td>
</tr>
<tr>
<td>CYPs IC$_{50}$</td>
<td>3A4, 2D6, 2C9, 2C19, 1A2 >10 µM</td>
</tr>
<tr>
<td>CYP3A4 TDI</td>
<td>negative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PK species</th>
<th>F (%)</th>
<th>Cl (L/h/kg)</th>
<th>Vss (L/kg)</th>
<th>Half-life (iv, h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>29</td>
<td>0.23</td>
<td>0.31</td>
<td>1.4</td>
</tr>
<tr>
<td>Rat</td>
<td>37</td>
<td>0.51</td>
<td>0.61</td>
<td>1.5</td>
</tr>
<tr>
<td>Dog</td>
<td>63</td>
<td>0.12</td>
<td>0.43</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- Potent, orally exposed Autotaxin inhibitor with optimized in vitro ADMET profile
- Good safety margins from preliminary rat and dog toxicity studies to progress as preclinical candidate

WO2014139882, WO2014202458
Combining structural features
GLPG1690

<table>
<thead>
<tr>
<th></th>
<th>LPC IC$_{50}$</th>
<th>Plasma IC$_{50}$</th>
<th>hERG IC$_{50}$</th>
<th>CYPs IC$_{50}$</th>
<th>CYP3A4 TDI</th>
<th>PK species</th>
</tr>
</thead>
</table>
| | 131 nM (K$_i$ = 15 nM, competitive inhibitor) | Mouse: 417 nM
Rat: 542 nM
Human: 221 nM | >10 µM | 3A4, 2D6, 2C9, 2C19, 1A2 >10 µM | negative | Mouse
F (%)
Cl (L/h/kg)
Vss (L/kg)
Half-life (iv, h)
Rat
Dog |
| | | | | | | Mouse: 29
0.23
0.31
1.4
37
0.12 |
| | | | | | | Rat: 37
0.51
0.61
1.5
63
0.43 |
| | | | | | | Dog: 63
0.12
0.43
3.5
63
0.43 |

- Potent, orally exposed Autotaxin inhibitor with optimized *in vitro* ADMET profile
- Good safety margins from preliminary rat and dog toxicity studies to progress as preclinical candidate

WO2014139882, WO2014202458
GLPG1690 synthesis

8 linear steps, 37% overall yield
X-ray structure
GLPG1690 in human Autotaxin

- Compound co-crystallized with human Autotaxin
 - Resolution: 2.4Å
- Hydrophobic pocket and channel occupancy by GLPG1690
Inhibition of LPA species production

Ex vivo human plasma assay (LC/MS)

- Method: Compound incubation in plasma for 2h at 37°C. LC-MS/MS

<table>
<thead>
<tr>
<th>LPA species</th>
<th>IC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>96</td>
</tr>
<tr>
<td>16:0</td>
<td>117</td>
</tr>
<tr>
<td>18:1</td>
<td>115</td>
</tr>
<tr>
<td>18:2</td>
<td>112</td>
</tr>
<tr>
<td>18:3</td>
<td>102</td>
</tr>
<tr>
<td>22:6</td>
<td>94</td>
</tr>
<tr>
<td>20:4</td>
<td>93</td>
</tr>
</tbody>
</table>

- GLPG1690 inhibits *ex vivo* LPA production, similar IC₅₀ for all LPA species
- GLPG1690 also inhibits LPA production (LPA 18:2) in mouse and rat plasma (not shown)
GLPG1690: mouse PK/PD properties
Reduction of plasma LPA 18:2 as biomarker

Administration of GLPG1690 to mice causes a sustained reduction in plasma LPA levels from a dose of 3 mg/kg onwards which demonstrates target engagement.
GLPG1690 *in vivo* activity

Lung fibrosis in mouse bleomycin (BLM) model

Ashcroft fibrosis score

Collagen content

0.01<p<0.05 vs BLM vehicle

0.01<p<0.05 vs pirfenidone

GLPG1690 at 30 mg/kg bid significantly superior to pirfenidone
Mouse BLM lung fibrosis model
Impact on LPA levels in BALF

- Significant increase of various LPA species in the disease group
- Short LPA species reduced by GLPG1690 show target engagement in a relevant matrix for lung fibrosis
GLPG1690 First-in-Human
Objectives/design

• Part 1: single ascending dose (SAD)
 ➢ 16 healthy volunteers; 6 active/2 placebo per dose level
 ➢ dose levels: 20 mg up to 1500 mg (as oral suspension)

• Part 2: multiple ascending dose (MAD)
 ➢ 24 healthy volunteers; 8/cohort; 6 active/2 placebo
 ➢ dose levels: 150 mg bid - 600 mg qd - 1000 mg qd for 14 days (as oral suspension)

• Objectives
 ➢ safety and tolerability
 ➢ pharmacokinetic profile
 ➢ pharmacodynamics: effect on LPA 18:2 plasma level
GLPG1690 SAD
LPA 18:2 reduction

- Dose-dependent reduction observed in plasma LPA 18:2
- GLPG1690 plasma levels above *ex vivo* IC$_{50}$ for LPA 18:2 reduction as of dose of 60 mg, in line with PD marker
GLPG1690 SAD
Plasma PK/PD relationship

In vivo IC\textsubscript{50} for inhibition of LPA 18:2 is in accordance with ex vivo IC\textsubscript{50}
Conclusions

- Imidazo[1,2-a]pyridine series as new chemotype of Autotaxin inhibitors
 - Series identified by HTS using FS-3 assay
 - SAR further developed with alternative assay using natural LPC substrate
 - CYP TDI and hERG properties improved through modulation of physicochemical and structural properties
- Unprecedented binding mode of series in Autotaxin with both lipophilic pocket and channel occupancy
 - Possible inhibition of LPA production and delivery
- Attractive profile for clinical candidate GLPG1690
 - Good correlation between PK and PD (LPA reduction)
 - High efficacy in mouse IPF model
- GLPG1690 successfully completed Phase 1 evaluation
- GLPG1690 moving to phase 2 in IPF in 2016
Acknowledgements

Chemistry
Bertrand Heckmann
Natacha Bienvenu
Laëtitia Cherel
Agnès Joncour
Virginie Labeguère
Xavier Bock
Christopher Housseman
Emilie Rondet
Olivier Picolet
Denis Annoot
Florilene Soulas
Christophe Peixoto
Taouès Temal-Laib
Maxime Girardet
Luce Lepissier
Jean-Marie Grassot

Biology
Reginald Brys
René Galien
Nick Vandegehinde
Roland Blanque
Sonia Dupont
Beatrice Vayssière
Celine Cottereaux
Christelle David
Katja Conrath
Thierry Christophe
Mia Jans and team

ADMET/PK
Ellen van der Aar
Line Oste and Team
Monica Borgonovi
Emanuelle Wakselman
Alain Monjardet

Pharmacology
Virginie Gaillard
Philippe Pujuguet
Marielle Auberval, Angelique Lecoz
Emilie Berrocal
Cynthia Saint-Marc

Management
Stephen Fletcher
Pierre Deprez
Romain Gosmini
Piet Wigerinck

IP and communication
Gregory Bar
Maria Nichol
Elizabeth Goodwin

Fidelta
Adrijana Kubicek
Darko Filic
Sulejman Alihodzic
Boska Hrvacic

Mercachem
Joerg Heiermann and team

Biofocus
Paul Hinchliffe and team

Structural Biology Brussels
Alexandre Wohlkonig

Argenta
Claire Morris
David Pearson